CleanTech Corridor

Project: CleanTech Corridor
Location: Los Angeles, CA
Firm: Mia Lehrer + Associates
Year: 2010
Firm website:

Project Description:  The CleanTech Corridor is a 4 mile long district on the eastern edge of Downtown Los Angeles, stretching from the Los Angeles State Historic Park in the north, to the CleanTech Manufacturing Center in the South, and includes both the east and west banks of the channelized Los Angeles River.

The 2,000-acre development zone which encompasses a mix of industrial areas along the Los Angeles River was recently designated as the “Los Angeles Cleantech district”: the cornerstone of the Mayor’s vision to put Los Angeles at the forefront of the clean tech revolution and to transform the old, downtown industrial core of Los Angeles into an incubator for green jobs, technology and the growth of LA’s economy. The Clean Tech Corridor is envisioned to bring together researchers, designers and manufacturers dedicated to the development of clean technology products and solutions to climate change challenges.

To imagine the Cleantech district, the team answered an open ideas competition organized by SCI-Arc’s Future Initiatives program, the Mayors’ office and The Architect’s Newspaper.

To move beyond industrial use and create an integrated economic, residential, clean energy, and cultural engine for the city, the team, led by ML+A, explored high performance infrastructures and innovative landscape strategies to develop a highly contextual strategy based on re-using existing and under-utilized resources on the site. The team targeted three major urban infrastructural resources for reuse: the historic bridges crossing the Los Angeles River, the industrial urban fabric, and the LA River itself.


The urban character of the Los Angeles industrial corridor is a paradoxical blend of functionality and disregard. Currently most of the cities distribution, shipping and freight storage occur within this zone. However, there is no structural logic or organization to this corridor. Freight modal hubs are littered along Alameda and Olympic. This blanket of industry is now a barrier between the Eastern Los Angeles community and downtown cutting off a large residential community from accessing the economic center of the city. Due to the lack of organizational clarity to these transit systems, 20-30 percent of the ‘industrial’ buildings that populate the site are outdated with no inherent flexibility or market value – currently shuttered, and left derelict. Conversely, this is part of what makes the clean-tech corridor site so provocative – its raw space and potential for industry and innovation. However, to function within a modern metropolis, the corridor needs a systemic overhaul, a retrofitting to transition into an intermodal landscape in which systems for energy creation (including solar arrays and hydroelectric power), waste management, transportation, and water runoff are integrated.


1. The Bridges as destinations
The team chose to perceive the heroic and monumental bridges along the river as untapped opportunities for dynamic, flexible public space. Largely overlooked, the series of concrete bridges traversing the LA River are a major urban element that imposes a unique identity to the corridor. Major pieces of urban infrastructure, the bridges are an iconic remnant of a once useful and coherent transit system, before the freeways and cars, when the Los Angeles population moved in a less nodal, disparate fashion. The architectural bridges are programmed to integrate the community east of Los Angeles into the site, and formally stitch the two sides of the river.

2. The re-use of existing industrial fabric
The “high performance ruin” is one such strategy of remediating the current vacancy of the site and propagating the development of an interior small business corridor. By editing elements of existing building stock down to elemental form (and retaining a connection to the utility grid) new uses can be integrated with minimal investment. Ideally, the urban ruin is a flexible building platform allowing for different uses to be installed facilitating an adaptive, urban flexibility responsive to shifting business models and volatile markets.

3. The recalibrated LA river
The clean-tech corridor has a symbiotic relationship with the river channel and the periodic events of storm water. The district is re-envisioned as a water filter and percolation zone, while the river itself is redefined as a waterway to support ecological services and social recreation. Also addressing the current inadequate preparation for a 100 year event flood, flood pockets and open space have been introduced along the river as flood control devices to relieve the river in periods of excessive storm events.

Additional Information: Sponsored by SCI-Arc and The Architects Newspaper, 70 entries were received from architectural firms and students in 11 countries. The competition asked architects, landscape architects, designers, engineers, urban planners, students, and environmental professionals to create an innovative urban vision for the CleanTech Corridor. Entrants were encouraged to challenge conventional wisdom and move beyond industrial uses—creating an integrated economic, residential, clean energy, and cultural engine to re-invigorate the industrial district into a thriving mixed-use center. This design is a winning submission.

Project Team Members: Mia Lehrer + Associates (landscape architect)
Astrid Diehl
Zhihang Luo
Buro Happold (engineering)
Steve Chucovich
Ron Elad
Krista Flascha Laney
Jim Suhr (economist)
Elizabeth Timme (architect)

San Juan Island Development Network

Project: San Juan Island Development Network: Microcosm of America
Location: San Juan Island, Washington
Designer: Joshua Brooks
Year: 2012
Program: Louisiana State University, Robert Reich School of Landscape Architecture
Faculty Advisors: Lake Douglas, Van Cox

Project Description: This project proposes a process-oriented planning framework, focusing on built works, policies, community programs, and funding strategies, for the San Juan Island National Park and the supporting rural community of San Juan Island. This process-based approach can help the island absorb future growth, foster the unique local culture, and protect and enhance the native ecosystem as its population doubles over the coming decade.

Theory: By employing three theoretical strands—1) systems thinking, as synthesized by MIT’s Donella Meadows, positing that the understanding of the relationship between entities offers a greater understanding of the larger system; 2) Chris Reed’s “curated ecologies,” which proposes that designers can establish a series of interactions over time between humans and ecological processes to produce desired outcomes; and 3) Rem Koolhaas’s process planning concept from the article “Whatever Happened to Urbanism,” in which he points out how modern planning efforts often don’t result in the intended end-product because of the reliance on the planning of permanent objects, instead of the planning of the processes themselves—this project attempts to challenge traditional top-down planning and unlock the potential of engaging process and complexity.

Project Goals: Five project goals are proposed within a 35-year framework: (1) connect island ecosystems through restoration easements, conservation policy, and a network of trails (2) diversify housing options and add user amenities to increase year round livability (3) support local agriculture and decentralized renewable energy production (4) structure an efficient transportation infrastructure with minimal disturbance to the existing system; and (5) foster island culture, art, research, tourism, local businesses, and natural and native history.

Design (Pilot Projects): Phase One (HIGHLIGHT): American Camp Visitor Center | As part of phase one, the American Camp parcel of San Juan Island National Park receives several upgrades, including a viaduct on an eroding cliff, several public art projects, and new visitor facilities which serve as a catalyst and demonstration for sustainable building practices and resource management across the island. Housing a theater, research laboratories, rental space, administration offices, and a large display area with views to Mount Rainer and the Olympic Mountain Range, this building serves the National Park Service, the University of Washington, and the people of San Juan Island.

Phase Two (INCENTIVIZE): Harbor CO-OP and the Island Agriculture Initiative | A biointensive urban farm and farmer’s co-op is built in conjunction with Friday Harbor grocery store, University of Washington Horticultural Research Laboratory, and the Friday Harbor community center. Using best management practices the construction of this farm will turn a fallow urban lot into an eighteen acre productive landscape with onsite packaging and propagation facilities, encouraging sustainable farming practices, combating the inflated price of food on San Juan island, and growing the local economy. To further support the growth of local farming, a harvest pickup service is offered along a selected route which connects areas of the island that are deemed best for farming.

Phase Three (GENERATE): How to build a Green Corridor Network | A network of open space corridors is grown across the island, creating an interconnected trail system, while simultaneously promoting the protection and restoration of wetlands, streambeds, estuarine habitat, and rare prairie and savannah ecosystems, as well as increasing water infiltration and curbing aquifer drawdown. A tax break program offers incentives for landowners to create ecological corridors within their property, with incentives being weighted by ecosystem type, parcel size, and proximity to existing open space.

Rather than relying on closed systems, this project offers a flexible, design-driven and process-based approach to planning, providing guidance to the National Park Service as well as the county and towns of San Juan Island on how to deal with its projected development without sacrificing culture or ecology.


Buffalo Bayou Promenade

Project: Buffalo Bayou Promenade
Location: Houston, TX
Firm: SWA Group
Year: 2010
Firm website:

Project Description:  Since Arthur Comey did his city plan for Houston in 1912, people have talked about making the city’s bayous into linear parks. It was not until the 1970s and 80s that the pieces began to fall into place. But serious gaps remained. The 1.2 mile long Buffalo Bayou Promenade was a critical missing link, tying the pastoral Buffalo Bayou Park to the west with the theater district and Houston’s downtown to the east. The Buffalo Bayou Partnership hired SWA Group to provide an early conceptual master plan transitioning urban bayou treatments to the pastoral bayou east and west of downtown which had been encircled by freeways and arterials. More recently, SWA was commissioned to complete the design of the west connection, addressing the unique physical constraints and challenges of the site while celebrating its urban and natural context in the heart of the city.

Traditionally, development had turned its back to this portion of the bayou. Towering freeway structures criss-cross the corridor, blocking out sunlight and spilling concentrated sheets of water off their sides during rain storms. Debris, trash, and silt travel along the waters of the bayou and are constantly deposited on the banks. Pedestrians who venture into this segment are more than thirty feet below the grade of surrounding streets, out of view, and with few access and egress points. Severe erosion occurred on excessively steep banks, while overgrown and invasive plantings created unsafe walking conditions for pedestrians. Recognizing these challenges, the design team employed a number of site specific solutions to make a successful pedestrian environment.

Extensive re-grading of the site enabled the team to lay back slopes, thereby helping to improve views into the park while also reducing the impact of erosion and improving flood water conveyance. The design used exposed concrete, recycled crushed concrete, and galvanized steel for their durability, cost effectiveness, and contextual relevance. The planting design re-established a living green tissue into an otherwise sterile environment leading into to the urban core. Groves of re-introduced native trees soften the harsh urban infrastructure, buffer noise, and mitigate the scale of the freeways.

Because Buffalo Bayou is the principal drainage system for much of Houston, the design team had to treat the waterway and its banks with special care. Gabion edge treatments offer visual clarity and therefore safety while utilizing over 14,000 tons of recycled crushed concrete. The stepped design accommodates changes in water levels while filtering floating storm debris. The open gabion cages also allow tree roots and riparian ground covers to form a natural edge while providing a porous foundation for the riparian benthic community.

The success of the park is measured, in large part, by its ability to function as a safe pedestrian environment at night. The landscape architects conceived of three orders of lighting to illuminate the park: a primary trail lighting system, a system of lights to wash through “dark nooks and crannies,” and an art-driven lighting component.

The 1.2 mile stretch of the Sabine-to-Bagby Promenade passes many of Houston’s historic and present day landmarks. Integrated within the wayfinding system, interpretive signage highlights the history of the waterway and the city of Houston. The design simultaneously celebrates historical infrastructure like the concrete foundations of Houston’s first civic center while educating pedestrians about flood-resistant native plants.

Project Team Members: SWA Group, Landscape Architect.
Lead Designer: Kevin Shanley; Project Team: Tim Peterson, Scott McCready, Lance Lowrey, Rhett Rentrop,  John Brandt.
Ann Olson, President, Buffalo Bayou Partnership.
Joe Turner, Director, City of Houston Parks and Recreation Department.

Photography Credits:  Tom Fox, Bill Tatham, SWA Group.

Additional Project Credits:
Architectural Lighting: HerveŽ Descottes; Stephen Korns, Artist
Public Art Sculpture: John Runnels, Artist
Geotechnical: Fugro South, Inc.
Civil Engineering: United Engineers, Inc.
Structural Engineering: Ken Tan and Associates
Electrical Engineering: Ferguson Consulting, Inc.
Planting Design: Mary L. Goldsby Associates – Landscape Architect
Irrigation Design: Ellis Glueck and Associates
Contractor: Boyer, Inc.